

ION HOSTED PAYLOAD SERVICES

ION Satellite Carrier offers a plug-and-play mechanical, electrical, and data interface to quickly integrate experiments and instruments onboard and operate them from the ground as subsystems of ION itself. Experiments and instruments are fitted inside structures ranging from 1U up to 16U in volume, connected to the main spacecraft bus, so they can be managed directly by D-Orbit mission controllers. Possible applications range from in-orbit demonstration (IOD) missions of 1U experiments, to month-long missions using massive optical or radar instruments.

YOU PROVIDE THE PAYLOAD. WE PROVIDE THE SATELLITE PLATFORM.

By encapsulating your payload inside a CubeSat structure that communicates through standard, well-defined interfaces, you can greatly simplify the development and testing of your experiment. During the mission, your payload will receive power, telecommunication, and thermal control from the main bus of the hosting spacecraft. You will also be able to control the hosting spacecraft's orientation during operations, to test your payload under different lighting conditions, or by pointing it to different areas of the globe over multiple orbits. Launch and operation cost are bundled in standard service packages, with a predictable price free from non-recurring costs, lowering the barrier to entry for IOD/IOV from one million dollars or more down to about a hundred thousand.

Having D-Orbit as a single contractual partner enables you to externalize lengthy, unpredictable, and costly processes connected to frequency licensing, launch authorization, and flight readiness certification.

ADVANTAGES:

- Standard, well defined interfaces: Plug-and-play CubeSat mechanical interface, Standard 5/12/28V electrical interface
- Access to host resources: Uplink, downlink, memory, and more
- Wide coverage: A network of ground stations provides multiple daily access opportunities
- **Attitude control**: Ability to point the platform to perform your tasks with optimal exposure to sun, darkness, Earth, and horizon
- Launch flexibility: Multiple launch options in LEO, SSO, and GEO every year, with possibility to switch launch in case of delay
- Multi-orbit: Repeat your experiment at different altitude and planes
- · Flexible pricing: Pay what you use

ION PLATFORM SPECIFICATIONS

ATTITUDE CONTROL

- Architecture: Three-Axis Control (Wheels, Magnetorquers)
- Pointing Knowledge/Control: 100 arcsec
- Agility: > 1 deg/s

COMMUNICATION

- Omnidirectional S-Band Up/Down (500 Kbps)
- Omnidirectional UHF Up/Down (Backup)
- Directional X-Band Down (> 50 Mbps)

MISSION CAPABILITIES

- Compatible Orbit Range: All inclination and Beta angles Without propulsion: 450 to 750 km
 With propulsion 400 to 2000 km
- Optional propulsion capabilities for station keeping and delta-v capabilities up to 1 km/s
- Launchers: Vega, Soyuz, Ariane6, PSLV, Falcon 9, Long March 11, Long March 4B
- Lifetime: LEO > 3 years

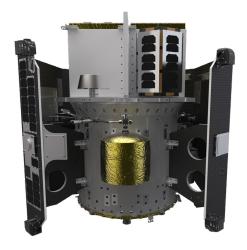
PLATFORM CAPABILITIES

- Mass: Up to 128 kg in extended CubeSat-sized slots (2kg per unit) up to 160 kg of generic payload
- Electrical Interface: 5/12/28 V regulated and protected
- Data Interface:

Ethernet

UART/USB


SPI I2C


Onboard data handling system:

Data storage: up to 128 Gb

Possibility to update your software on orbit

- External Field of View: unrestricted on five sides
- Thermal Interface: 10 to 20 degC thermal sink

APPLICATIONS

SCIENCE: Take your sensors to orbit, make experiments, and collect data.

MARKETING: Take your brand to space and become the coolest, the fastest, and the highest in your industry

TECHNOLOGY: Fly and operate hardware components and subsystems to collect performance data and validate use cases.